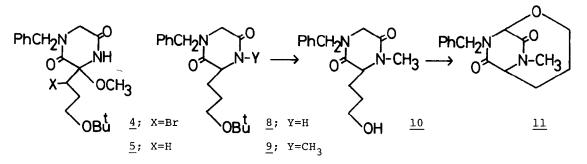
FACILE SYNTHESES OF 3-SPIRO- AND 3,6-BRIDGED 2,5-PIPERAZINEDIONES

Chung-gi Shin, * Yoshiaki Sato, and Juji Yoshimura[†]

Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221 ⁺Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Midori-ku, Yokohama 227, Japan

Summary: The intramolecular addition of hydroxyl group of 3-(3-hydroxyl)propylidene-2,5-piperazinedione to 3-position and the same substitution of 3-(3-hydroxy)propyl derivative to 6-position gave the corresponding 3-spiro- and 3,6bridged 2,5-piperazinediones, respectively.


Recently, much attention is being denoted to the synthesis of fumitremorgins,¹⁾ verruculogen,²⁾ and bicyclomycin,³⁾ containing a hydroxyl group at 3position and a bicyclic structure of 2,5-piperazinedione (PDO) derivatives. In connection with the synthesis of α -alkoxy- α -amino acids,⁴⁾ more recently, the convenient and facile addition of alcohols and water to the C=C bond of 3alkylidene- and 3,6-dialkylidene-PDO has been presented by us.⁵⁾ On the other hand, concerning the preparation of 3-alkoxy-PDO, the similar addition reaction⁶⁾ and the another preparative method have been reported.^{7,8)} Here, we wish to report the more applicable intramolecular addition and substitution of 3-(3hydroxy)propylidene- and -propyl-PDO, whose results are devoted to the suggestion for the synthesis of the bicyclic structural skeleton of bicyclomycin.

As the starting 3-alkylidene-PDO, ethyl 2-chloroacetylamino-4-ethoxycarbonyl-2-butenoate [Bp 162-164 ^OC/2mmHg. IR: 3300 (NH), 1740 (COOEt), 1690 and 1520 (NHCO) cm⁻¹. NMR: δ 6.94, 7.36t (-CH=, J=7.0Hz), 8.28, 8.66 (NH)], derived by the condensation of ethyl 4-ethoxycarbonyl-2-oxobutanoate with chloroacet-

2401

amide,⁹⁾ was cyclized with benzylamine to give the expected 1-benzyl-3-(2-ethoxycarbonyl)ethylidene-PDO [<u>1</u>; yield 64%, mp 131-132 °C. IR: 3200, 1735, 1685, 1635 cm⁻¹. NMR: δ 6.30t (-CH=, J=7.5Hz), 9.76 (NH)]. The subsequent reduction of <u>1</u> with LiAlH₄ in THF by the usual way gave 1-benzyl-3-(3-hydroxy)propylidene-PDO as colorless crystals [<u>2</u>; yield 60%, mp 130-131 °C. IR: 3400, 3200, 1680, 1630 cm⁻¹. NMR: δ 6.25t (-CH=, J=8.0Hz), 3.76 (OH), 9.62 (NH)]. After preparation of 3-(3-t-butoxy)propylidene-PDO [<u>3</u>; yield 88%, mp 123-125 °C. IR: 3180, 1680, 1635 cm⁻¹. NMR: δ 6.28 (-CH=, J=8.0Hz), 9.56 (NH)] from <u>2</u> and isobutene, the reaction of equimolar <u>3</u> (2.85 mmol) with N-bromosuccinimide (NBS) in MeOH (10 ml) proceeded to give colorless crystals, identified as 1-benzyl-3-methoxy-3-(3-t-butoxy-1-bromo)propyl-PDO [<u>4</u>; δ 4.94t (-CHBr-, J=5.5Hz)]. Subsequently, the hydrogenation of <u>4</u> with 10% Pd-C in the presence of Et₃N gave the corres-

ponding 3-t-butoxypropyl-PDO [5; δ 2.06m (-CH₂-)].

On the other hand, for the purpose of the intramolecular addition of hydroxyl group, equimolar 2 (3.08 mmol) was subjected to the treatment with NBS in CHCl₃ (20 ml) to give a syrupy substance, which was found to be consisted of two chemical species as a diastereomer. The two isomers were separated readily by chromatography on a silica gel column using a mixture of $CHCl_3$ -acetone (25 : 1 v/v) as the eluent to give two kinds of colorless crystals, which were identified as 3-(4-bromocyclopentyl-1-oxy)spiro-PDO [<u>6a</u>; δ 5.05t (-CHBr-, J=7.5Hz)] from first fraction and the diastereoisomer [<u>6b</u>; δ 4.22m (-CHBr-)] from the second, respectively. Subsequently, the bromine of each isomer thus obtained was debrominated with 10% Pd-C in the presence of Et₃N by the catalytic reduction to give the corresponding same spiro-PDO derivative [<u>7</u>; δ 2.02m (-CH₂at 4-position)] in a fairly good yield.

Furthermore, in order to synthesize the desired 3,6-bridged PDO derivative, successive reduction of <u>3</u> with 10% Pd-C to the corresponding saturated PDO [<u>8</u>; δ 4.02m (3-H)] and the methylation of <u>8</u> with methyl iodide to the corresponding N-methylated PDO [<u>9</u>; δ 4.03t (3-H, J=5.5Hz)] were carried out by the usual methods, followed by the removal of t-butyl group by CF₃COOH to give 1-benzyl-3-(3-hydroxy)propyl-4-methyl-PDO [<u>10</u>; 3350 (OH), 1660 (CO) cm⁻¹, δ 4.40 (OH), 4.04t (3-H, J=5.0Hz)] in an 83% overall yield from 3. Subsequently, a solution

Compound	Yield	Mp ^o c ^{c)}	NMR spectru	um, δ in	CDC13	IR spectrum ^{f)}
No.	(%)	-	NH	6-н	(J _{Hz})	(cm ⁻¹) NH
4	96	138	8.54	3.94d	(1.5)	3170
5	95	syrup	8.34	3.89q	(18.0) ^{e)}	3220
<u>6a</u>	59	142-143	7.92	3.91q	(18.0) ^{e)}	3270
<u>6b</u>	25	150-151	8.30	3.88d	(4.0)	3180
<u>7</u>	91 ^{a)} 90 ^{b)}	94-95	8.79	3.89q	(18.0) ^{e)}	3200
<u>8</u>	92	120-122	7.74	3.77s		3240
<u>9</u>	98	97-98		3.83q	(18.0) ^{e)}	
10	92	73-75 ^{d)}	·	3.86d	(2.5)	
a) From 6	a h) Error (h a) Colorly		0.0.1		

Table 1. The yields, melting points, and spectral data of 4-9, and 10

a) From <u>6a</u>. b) From <u>6b</u>. c) Colorless needles. d) Colorless prisms. e) AB quartet. f) In KBr.

of equimolar <u>10</u> (3.99 mmol) and NBS in $CHCl_3$ (10 ml) was refluxed for about 1 hour and then the reaction solution was washed twice with water. The organic layer was dried over anhydrous Na_2SO_4 and then concentrated to give colorless

crystals, which was identified as 8-benzyl-l0-methyl-8,l0-diaza-2-oxobicyclo-[4.2.2]decan-7,9-dione [11; yield 68%, mp 136-138 O C. IR: 1670 (CO) cm⁻¹. NMR: δ 4.12dd (3-H, J=3.0Hz and J=4.5Hz), 5.12s (6-H)].

In consequence, it could be first generallized the inter- and intramolecular addition of hydroxyl group in the presence of NBS to 3-alkylidene-PDO and the intramolecular substitution to 6-position giving the corresponding 3-alkoxy-, 3-spiro-, and 3,6-bridged PDO.

From the above results, the formation mechanism of $\underline{4}$ and $\underline{6}$ is presumed that the N-bromo derivative of $\underline{3}$ and $\underline{2}$ is initially formed as an intermediate, followed by the 1,3-migration of the bromine to yield unstable intermediate containing C=N bond in ring, to which hydroxyl group immediately adds to give $\underline{4}$ and $\underline{6}$. In fact, when the nitrogen atom was protected with acyl group, the addition of hydroxyl group to C=C bond did not proceed.^{5,10)} On the other hand, in the case of $\underline{10}$, it is supposed that bromine attacked initially to the ring methylene at 6-position of $\underline{10}$ to form 1-benzyl-6-bromo-4-methyl-3-(3-hydroxy)propyl-PDO as an unstable intermediate, in which the subsequent cyclization between the bromo and hydroxylpropyl groups by the nucleophilic substitution proceeds to give 11.

References

- M. Yamazaki, S. Suzuki, and K. Miyaki, Chem. Pharm. Bull. (Tokyo), <u>19</u>, 1739 (1971).
- J. Fayos, D. Lokensgard, J. Clardy, R. J. Cole, and J. W. Kirksey, J. Am. Chem. Soc., <u>96</u>, 6785 (1974).
- T. Miyoshi, N. Miyairi, H. Aoki, M. Kohsaka, H. Sasaki, and H. Imanaka, J. Antibiotics, <u>25</u>, 569 (1972).
- 4) C. Shin, Y. Sato, and J. Yoshimura, Bull. Chem. Soc. Jpn., 49, 1909 (1976).
- 5) C. Shin, Y. Sato, T. Takada, K. Hibi, and J. Yoshimura, 42nd National Meeting of the Chemical Society of Japan, Sendai, September 1980, Abstr. II, p. 584.
- 6) J. D. M. Herscheid, R. J. F. Nivard, M. W. Tijhuis, H. P. H. Scholten, and H. C. J. Ottenheijm, J. Org. Chem., <u>45</u>, 1880 (1980).
- 7) L. V. Dunkerton and R. M. Ahmed, Tetrahedron Lett., 1980, 1803.
- M. Maag, J. F. Blount, D. L. Coffen, T. V. Steppe, and F. Wong, J. Am. Chem. Soc., <u>100</u>, 6786 (1978).
- 9) C. Shin, Y. Fujii, and J. Yoshimura, Tetrahedron Lett., 1971, 2499.
- 10) Unpublished data.

(Received in Japan 14 March 1981)

2404